#### 图书基本信息

书名:《软物质力学进展》

13位ISBN编号: 9787040317299

10位ISBN编号:704031729X

出版时间:2011-10

出版社:高等教育出版社

页数:298

版权说明:本站所提供下载的PDF图书仅提供预览和简介以及在线试读,请支持正版图书。

更多资源请访问:www.tushu111.com

#### 内容概要

《软物质力学进展(英文版)》作为软物质物理学的一个重要分支,近年来软物质力学的研究取得了重大的发展。《软物质力学进展(英文版)》即是从力学的角度系统总结了软物质物理学的最新进展,深入介绍了软物质力学研究的新方法,包括多尺度胶体计算力学、熵弹性理论、无网格模拟液晶聚合物、DNA模拟计算等,并从跨学科的角度出发,介绍了当前软物质力学研究领域的一些前沿课题。《软物质力学进展(英文版)》的主编是美国加州大学伯克利分校的李少凡教授和南非科学院院士、开普半岛科技大学的孙博华教授。

#### 书籍目录

## Chapter 1 Atomistic to Continuum Modeling of DNA Molecules

- 1.1 Introduction
- 1.2 Statistical models for DNAs -- polymer elasticity
  - 1.2.1 The freely jointed chain (FJC) model
  - 1.2.2 The worm-like chain (WLC) model
  - 1.2.3 Beyond the entropic regime
  - 1.2.4 Long-range electrostatic effects
- 1.3 Atomistic modeling of DNA molecules
  - 1.3.1 MD basic theory
  - 1.3.2 Force fields for nucleic acids
  - 1.3.3 Limitations and challenges
  - 1.3.4 MD simulation of DNA stretching
- 1.4 Continuum DNA models
  - 1.4.1 Kirchhoff's elastic Rod model for DNAs
  - 1.4.2 Finite element (FE) analysis, of DNAs
- 1.4.3 Director field method for modeling of DNA viral packaging
  - 1.5 Multiscale homogenization for simulation of DNA molecules
    - 1.5.1 Basics of multiscale wavelet projection method
    - 1.5.2 First-level homogenization -- wavelet-based

#### coarse-grained DNA model

1.5.3 Second-level homogenization-- hyperelastic beam

#### formulation for DNA

- 1.5.4 Applications
- 1.6 Conclusion

Appendix: Wavelet and decomposition coefficients

for linear spline function

References

Chapter 2 Computational Contact Formulations for Soft Body

Adhesion

Chapter 3 Soft Matter Modeling of Biological Cells.

Chapter 4 Modeling the Mechanics of Semiflexible Biopoly-mer

Networks: Non-afline Deformation and Presence of Long-range

Correlations

Chapter 5 Atomic Scale Monte-Carlo Studies of Entropic

Elasticity Properties of Polymer Chain Molecules

Chapter 6 Continuum Models of Stimuli-responsive gels

Chapter 7 Micromechanics of 3D Crystallized Protein

Structures

Chapter 8 Micromechanical Modeling of Three- dimensional

Open-cell Foams

Chapter 9 Capillary Adhesion of Micro-beams and Plates: A

Review

Color Plots

#### 章节摘录

collagenous connective tissues, battery substrates and paper products amongmany others. For example, the cytoskeleton is a random network of filamen-tous proteins: filamentous actin (F-actin), microtubules and intermediatefilaments. This network is rendered active by the presence of myosin motormolecules and has a complex role in the mechanics of the cell, the transport of biomolecules within the cytoplasm and in chemo-mechanical transductionand signaling[I-3]. The cytoskeleton is an out-of-equilibrium network which constantly remodels itself in response to external stimuli using a large num-ber of binding and cross-linking proteins interacting with the cytoskeletalfilaments. Fiber networks may also be exploited by several infectious bac-teria for self-propulsion[4, 51. The bacterial pathogen listeria monocytogenes, responsible for more than 2000 annual illnesses and deaths in US, form a fil-amentous comet tail by taking over the host cell actin machinery. The comettail is a complex network of cross-linked filaments which are constantly poly-merized and depolymerized to generate forces to propel the bacteria withinthe cytoplasm of the infected cells and into the other neighboring cells. The local elasticity of these media determines to a large extent cellular growth rates. Connective tissues (CTs) such as cartilage and tendon belong to an-other category of biological fibrous networks. The mechanical functionality of CTs derives directly from the structure and composition of their extracellular matrix (ECM). ECM is a network of insolub e fibrils (e.g., collagen, elastin) and soluble proteoglycan polymers. It is responsible for carrying stresses andmaintaining tissue shape while influencing a large number of other biologi-cal properties and functions of the tissue. In any connective tissue, the con-stituents are meticulously arrangedinside the extracellular matrix to optimize the function of that specific tissue.

### 精彩短评

- 1、本书内容实用,讲解详细,非常好。
- 2、不错,很快到货

### 版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:www.tushu111.com