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0000 000 1.3.2.4Decoupling of Turbulent Fluctuations It has been indicated from many studies that the
effect of drag reducer on turbulent flows also appears as the decreased correlation between the axial and radial
fluctua-tions. This effect is named "decoupling.” The decoupling of turbulent fluctuations can decrease the
Reynolds stress. According to the quantitative relationship between Reynolds shear stress and the turbulent
contribution to frictional drag coefficient deduced by Fukagata et al. [1 i.e., the FIK equation] [1 381, a decrease
of Reynolds shear stress directly results in a decrease of the friction factor of turbulent flow, and so turbulent DR.
Actually, a decrease of Reynolds stress is caused by twofold effects, that is, the decoupling of turbulent fluctuations
and turbulence suppression [0 17,33,39-41 [0 .This postulation is also correct qualitatively. 1.3.2.5 Viscoelasticity
All polymer and surfactant solutions with turbulent drag-reducing effects display viscoelastic rheological
properties. With the development of viscoelastic fluid mechanics, some researchers proposed that the
drag-reducing effect of polymer and surfactant solutions is the result of the interaction between viscoelasticity and
turbulent vortices. The microstructures I polymer molecule chains or network structures in surfactant solution(]
in the drag reducer solution at a high-shear-rate region can absorb the turbulent kinetic energy of small vortices
within the energy-containing range and store it. When the microstructures are diffused or convected to a
low-shear-rate region,they will be relaxed to a random threadlike entanglement and the stored energy will be
released to the low-wave-number vortices [ large-scaled vortices] in the form of elastic stress waves, which
greatly decreases the dissipation of turbulent kinetic energy and induces turbulent DR. The viscoelastic theory for
the mechanism of turbulent DR by additives was proposed by DeGennes [0 4201 . The viscoelasticity postulation
not only explains the turbulent DR phenomenon in many polymer and surfactant solution flows with
viscoelasticity, but also estimates the DR rate quantitatively. It is also a powerful tool for studying the mechanism of
turbulent DR from the viewpoint of the physics of turbulence and developing new quantitative analysis theories for
turbulent drag-reducing flows. However, this postulation was challenged by the "anisotropic stresses"hypothesis
proposed by Toonder [ 4301 .
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