ooty

gooooo

gooboobboododga

130 ISBNL O [9787302312932

1000 ISBNLI O [0 7302312931

00000 2013-2

gobobooboboodadd

0 0O 0589
gobobobobbuodgoogogpebrOb0goooobbbobbodoooobboobood

OOOO0O0OOQOwww.tushulll.com

Page 1

ooty

ERERERN

Page 2

ooty

ERERERN

oo0(@)ooooboooooo

Page 3

uoouogdg

ERERERN

Preface Reader's Guide Acknowledgments PART ONE INTRODUCTION 1 CHAPTER 1 What Is Software
Architecture? 3 1.1 What Software Architecture Is and What It Isn't 4 1.2 Architectural Structures and Views 9 1.3
Architectural Patterns 18 1.4 What Makes a "Good" Architecture? 19 1.5 Summary 21 1.6 For Further Reading 22
1.7 Discussion Questions 23 CHAPTER 2 Why Is Software Architecture Important? 25 2.1 Inhibiting or Enabling a
System’s Quiality Attributes 26 2.2 Reasoning About and Managing Change 27 2.3 Predicting System Quialities 28
2.4 Enhancing Communication among Stakeholders 29 2.5 Carrying Early Design Decisions 31 2.6 Defining
Constraints on an Implementation 32 2.7 Influencing the Organizational Structure 33 2.8 Enabling Evolutionary
Prototyping 33 2.9 Improving Cost and Schedule Estimates 34 2.10 Supplying a Transferable, Reusable Model 35
2.11 Allowing Incorporation of Independently Developed Components 35 2.12 Restricting the VVocabulary of
Design Alternatives 36 2.13 Providing a Basis for Training 37 2.14 Summary 37 2.15 For Further Reading 38 2.16
Discussion Questions 38 CHAPTER 3 The Many Contexts of Software Architecture 39 3.1 Architecture ina
Technical Context 40 3.2 Architecture in a Project Life-Cycle Context 44 3.3 Architecture in a Business Context 49
3.4 Architecture in a Professional Context 51 3.5 Stakeholders 52 3.6 How Is Architecture Influenced? 56 3.7 What
Do Architectures Influence? 57 3.8 Summary 59 3.9 For Further Reading 59 3,10 Discussion Questions 60
PARTTWO QUALITY ATTRIBUTES 61 CHAPTER 4 Understanding Quality Attributes 63 4.1 Architecture and
Requirements 64 4.2 Functionality 65 4.3 Quality Attribute Considerations 65 4.4 Specifying Quality Attribute
Requirements 68 4.5 Achieving Quality Attributes through Tactics 70 4.6 Guiding Quality Design Decisions 72 4.7
Summary 76 4.8 For Further Reading 77 4.9 Discussion Questions 77 CHAPTER 5 Availability 79 5.1 Availability
General Scenario 85 5.2 Tactics for Availability 87 5.3 A Design Checklist for Availability 96 5.4 Summary 98 5.5
For Further Reading 99 5.6 Discussion Questions 100 CHAPTER 6 Interoperability 103 6.1 Interoperability
General Scenario 107 6.2 Tactics for Interoperability 110 6.3 A Design Checklist for Interoperability 114 6.4
Summary 115 6.5 For Further Reading 116 6.6 Discussion Questions 116 CHAPTER 7 Modifiability 117 7.1
Modifiability General Scenario 119 7.2 Tactics for Modifiability 121 7.3 A Design Checklist for Modifiability 125
7.4 Summary 128 7.5 For Further Reading 128 7.6 Discussion Questions 128 CHAPTER 8 Performance 131 8.1
Performance General Scenario 132 8.2 Tactics for Performance 135 8.3 A Design Checklist for Performance 142 8.4
Summary 145 8.5 For Further Reading 145 8.6 Discussion Questions 145 CHAPTER 9 Security 147 9.1 Security
General Scenario 148 9.2 Tactics for Security 150 9.3 A Design Checklist for Security 154 9.4 Summary 156 9.5 For
Further Reading 157 9.6 Discussion Questions 158 CHAPTER 10 Testability 159 10.1 Testability General Scenario
162 10.2 Tactics for Testability 164 10.3 A Design Checklist for Testability 169 10.4 Summary 172 10.5 For Further
Reading 172 10.6 Discussion Questions 173 CHAPTER 11 Usability 175 11.1 Usability General Scenario 176 11.2
Tactics for Usability 177 11.3 A Design Checklist for Usability 181 11.4 Summary 183 11.5 For Further Reading 183
11.6 Discussion Questions 183 CHAPTER 12 Other Quiality Attributes 185 12.1 Other Important Quality
Attributes 185 12.2 Other Categories of Quality Attributes 189 12.3 Software Quality Attributes and System Quality
Attributes 190 12.4 Using Standard Lists of Quality Attributes- or Not 193 12.5 Dealing with "X-ability": Bringing a
New Quiality Attribute into the Fold 196 12,6 For Further Reading 200 12.7 Discussion Questions 201 CHAPTER
13 Architectural Tactics and Patterns 203 13.1 Architectural Patterns 204 13.2 Overview of the Patterns Catalog 205
13.3 Relationships between Tactics and Patterns 238 [0 [0 PARTTHREE ARCHITECTURE INTHE LIFE
CYCLE 271 PART FOUR ARCHITECTURE AND BUSINESS 435 PART FIVE THE BRAVE NEWWORLD
501

Page 4

uoouogdg

ERERERN

0000 OO0 Increase Cohesion Several tactics involve moving responsibilities from one module to
another. The purpose of moving a responsibility from one module to another is to reduce the llkelihnnd of side
effects affecting other responsibilities in the original module. Increase semantic coherence. If the responsibilities A
and B in a module do not serve the same purpose, they should be placed in different modules. This may involve
creating a new module or it may involve moving a responsibility to an existing module. One method for identifying
responsibilities to be moved is to hypothesize likely changes that affect a module. If some responsibilities are not
affected by these changes, then those responsibilities should probably be removed. Reduce CouDlina We now turn
to tactics that reduce the couoling between modules. Encapsulate. Encapsulation introduces an explicit interface to
a module. This interface includes an application programming interface (API) and its associated responsibilities,
such as "perform a syntactic transformation on an input parameter to an internal representation.” Perhaps the most
common modifiability tactic, encapsulation reduces the probability that a change to one module propagates to
other modules. The strengths of coupling that previously went to the module now go to the interface for the
module. These strengths are, however, reduced because the interface limits the ways in which external
responsibilities can interact with the module (perhaps through a wrapper). The external responsibilities can now
only directly interact with the module through the exposed interface (indirect interactions, however, such as
dependence on quality of service, will likely remain unchanged). Interfaces designed to increase modifiability
should be abstract with respect to the details of the module that are likely to change that is, they should hide those
details.

Page 5

ooty

ERERERN

Page 6

ooty

ERERERN

oo ododooooooodododoooooooogao
00oooooooooooooooo

3[0 Software architecture in Practice, a very good book in software architecture design!
ADO0DODO0ODOO0D0OO0DOO0DO0000bO0DbOOOO000000000000000D0DOO
00000000000 DO0DO0DO0DO0DO0O000bO0bOO0ODOO0ODOOoDOoDOoDOOOoOOobOOn
00000000000 DO0DO0D00D000000bO0bOO0DbOO0DBOO00D0D000000O0
0000000000000 DOO0DO0DO0DO0DO00000O0bO0ODOO0ODOODODOoDOoDOn
lo0o000000ooooOooD0o0o00o0bOobO0bO0oDOOooOOooDOoDOoDooDoOooOoDbOon
00000000000 DOO0DOO0DoOooDOooo0ooooooon
s0000000000DO00DO0O/0D00000000000DbOO0ODOODODOooDODOoOooOOoDOd
Ooooo

Page 7

ooty

ERERERN

10000ooooboobo-0240

The software architecture of a system is the set of structures needed to reason about the system, which
comprises software elements, relations among them, and properties of both.
gbododotoooooooootuodoooooooootdodoooooooooonoao
OOo00o0doo0oooOooboooboooboobobboobooo

0000000000000 00000D0D0O00 StructureD 000 O Viewd O

A structure is a set of elements and the relations of them. A view a represenation of a coherent set of architectural
elements, as written by and read by system stakeholders. A view is a representation of one or more structures.
0000000000000 D0DO0O-00000400 Component-and-Connector structures, C&CO [
O 0O O O O Allocation structures] [

000000 o0000o0ooooobooooooooooObOoo00oooooobooboooooo
0000000000 Decomposition structurel] 0 O O O O O Uses structure[d 00 0 0 O O O Layer
structurel] 00 0 O O O Class or generalization structure(J] [J [0 00 00 0 0 Data modelJ O 00 00 C&CO O
00000 DO Service structured O 0O O O O O Concurrency structure0 O 0 000000000

O Deployment structured O O O O O O Implementation structure O O O O O O O O Work assignment
structurel 00 0000000000000 0O0OOOODOOO0O0O0OOODOD FewerisBetterd [0 0 O
00000000000 O provide insight and leverage into the system's most important quality attributes
0000000000000 oooboooddratterns 00 000O0ODOOOO" OOO" OOO
O0o0oooOoo0ooooooooboooooooooooooooooooooo

O00000000D00DO0DO0ODO0ODODOOdSideNoted DO OO0 O0OO0OO0OOOO
[Software Architecture[d Software Architecture[] Enterprise Architecture0 0 0 0 000 OO O0OO0OOO0O
OO000ORKODODODODOODOODOODOOOOO

gobbobbbuoogooobbobbuoooogobobobboooooobobobboougg
ERERE

0000000 oonb-besd

0000000000000 00000000000000000O000DO00DO00oO0o0an
gttt ooboobobuobuobouobouobboobobo
gttt ooboobobuobuobouobouobboobobo
0000000000000 00000000000000000O000000AIC(Architecture
Influnce Cycle)O StakeholdersDU O D OO O OO 0OO

0000000000000 000OQualityAttributesD D D00 0000O0OOOODODOOOOOOO
oot otdodoooooooootdodoooooooooonoaa
000000 O Aquality attribute (QA) is a measuable or testable property of a system that is used to indicate

how well the system satisfies the needs of its stakeholders.

0000000000000 D00D00D000000000OfunctionalityD 00000000000
OO00000000DO0DOO0DODOoDOoDoO0ooooooon

sbboouuuooonnb-bisst

Page 8

ooty

O0O000000bOo0bb40bibbblnboooobooboonbd (Availability)d O
O0000b0o0obooobooboobobooobgsanlityd o ooobooboooobooo
guoobobbooooobobbouoooobobbboooooobbbooooooobn
gudobobbtooooobobbogoooobbbbooooobbbooooooobn
guoobobbuogoooooobouogoooooobbuoooon

gudoubbbboooouobbbuoooouobobbbooooobobb bbb obo
gobbobbooogooobobo

drgdbobobbougoooobobboooooobobbbbuoooooobobooboogo
gooooooo

O0o00oooooooooo
O0O000oOooDoooooao
Auvailability, Interoperability, Modifiability, Performance, Security, Testability, Usability, [B-list] variability,
portability, development distributability, scalability, elasticity, deployability, mobility, monitorability.
ADDDO0DD0O0000000-01370
000000000000 00D0bO00bO00DObO0o0bOO00DOOOoo0DbDOo0oDOoOoOooDOon
O0000o0OO00DbO0o0oooobOo0bOoooDbOoooOoooDobOOooooooDobOooooooDo
O0o00ooOooboooooaa
s00000000000O-02750
O000o00o0o0obooboooobooboobDbooboooDbooboooDoooDbg
600000000000 DO-0380

gobbobbbodgoggobbobbboddoogobboobsobbuodoogoooooo
gobwppobobooooooooon

Mmoboobodoooonb-b2sen
gooobobbbgooooobbbuoooobbbboooooobbboooooon
guooobobbboooooobobbbogoooobbbbooooobobbboooooobbn
guoobobbbotboooobbbogoooobbbbooooobobbbuoooooobbn
guoobobbooooobobbouoooobobbboooooobbbooooooobn
gudobobbtooooobobbogoooobbbbooooobbbooooooobn
guooouobbogoooooobuoooooo
guoobobbuogoooooobououooouoboobbuooooono
subbuuuuoonn-04s0
gobbobboogoguobbobbbudoooobobboouooooboboon

gobboobbbuodgoguobobobbuodoodobobobobooooooobobboougya

Page 9

ooty

gobz200000dad

oot otdotdodoooonoooododoooooooooonoaa
00000000000 0000007M00000000¢0 0O 0O 1. Making a business case for the system
2. Understanding the architecturally significant requirements

3. Creating or selecting the architecture

4. Documenting and communicating the architecture

5. Analyzing or evaluating the architecture

6. Implementing and testing the system based on the architecture

7. Ensuring that the implementation conforms to the architecture

ounbbuuuooonnb-b420

Performance TacticsontheRoad D 0 0 O OO0 0O O

Page 10

ooty

ERERERN

guoooobboopbrOdooobobbgogoooobnbd

OO00O0O0O0O0O :www.tushulll.com

Page 11

