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0000 OO0 Increase Cohesion Several tactics involve moving responsibilities from one module to
another. The purpose of moving a responsibility from one module to another is to reduce the llkelihnnd of side
effects affecting other responsibilities in the original module. Increase semantic coherence. If the responsibilities A
and B in a module do not serve the same purpose, they should be placed in different modules. This may involve
creating a new module or it may involve moving a responsibility to an existing module. One method for identifying
responsibilities to be moved is to hypothesize likely changes that affect a module. If some responsibilities are not
affected by these changes, then those responsibilities should probably be removed. Reduce CouDlina We now turn
to tactics that reduce the couoling between modules. Encapsulate. Encapsulation introduces an explicit interface to
a module. This interface includes an application programming interface (API) and its associated responsibilities,
such as "perform a syntactic transformation on an input parameter to an internal representation.” Perhaps the most
common modifiability tactic, encapsulation reduces the probability that a change to one module propagates to
other modules. The strengths of coupling that previously went to the module now go to the interface for the
module. These strengths are, however, reduced because the interface limits the ways in which external
responsibilities can interact with the module (perhaps through a wrapper). The external responsibilities can now
only directly interact with the module through the exposed interface (indirect interactions, however, such as
dependence on quality of service, will likely remain unchanged). Interfaces designed to increase modifiability
should be abstract with respect to the details of the module that are likely to change that is, they should hide those
details.
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3[0 Software architecture in Practice, a very good book in software architecture design!
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The software architecture of a system is the set of structures needed to reason about the system, which
comprises software elements, relations among them, and properties of both.
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0000000000000 00000D0D0O00 StructureD 000 O Viewd O

A structure is a set of elements and the relations of them. A view a represenation of a coherent set of architectural
elements, as written by and read by system stakeholders. A view is a representation of one or more structures.
0000000000000 D0DO0O-00000400 Component-and-Connector structures, C&amp;CO [
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000000 o0000o0ooooobooooooooooObOoo00oooooobooboooooo
0000000000 Decomposition structurel] 0 O O O O O Uses structure[d 00 0 0 O O O Layer
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00000 DO Service structured O 0O O O O O Concurrency structure0 O 0 000000000

O Deployment structured O O O O O O Implementation structure O O O O O O O O Work assignment
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00000000000 O provide insight and leverage into the system's most important quality attributes
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0000000000000 000OQualityAttributesD D D00 0000O0OOOODODOOOOOOO
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000000 O Aquality attribute (QA) is a measuable or testable property of a system that is used to indicate

how well the system satisfies the needs of its stakeholders.
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Auvailability, Interoperability, Modifiability, Performance, Security, Testability, Usability, [B-list] variability,
portability, development distributability, scalability, elasticity, deployability, mobility, monitorability.
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00000000000 0000007M00000000¢0 0O 0O 1. Making a business case for the system
2. Understanding the architecturally significant requirements

3. Creating or selecting the architecture

4. Documenting and communicating the architecture

5. Analyzing or evaluating the architecture

6. Implementing and testing the system based on the architecture

7. Ensuring that the implementation conforms to the architecture
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