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This is an introductory textbook on the geometrical theory of dynamical systems, fluid flows, and certain integrable
systems. The subjects are interdisciplinary and extend from mathematics, mechanics and physics to mechanical
engineering, and the approach is very fundamental. The underlying concepts are based on differential geometry
and theory of Lie groups in the mathematical aspect, and on transformation symmetries and gauge theory in the
physical aspect. A great deal of effort has been directed toward making the description elementary, clear and

concise, so that beginners will have an access to the topics.
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