L1 Perll] O [

goooon

OO0O00Perlddd

1300 ISBNO [0 [J 9787564138882

1000 ISBNO O 0 7564138882

00000 2013-1-1

guoduooobooogo

000000 (Randal L.Scbwartz),[0 O (Brian d Foy),[0 O O O (Tom Pboenix)

ggoa3rt
godoobboooogoopbFOb OO0 OOOOOO0O0OO0O0OoOoObOOooon

OOOO0O0O0OQOwww.tushulll.com

Page 1

L1 Perll] O [

ERERERN
OPerlU 0 (@O0 D20)oOOooobhooboooboobobooobooboboobooobo

O00000000000000Db0000000bOOPeriO0OOOCPANDDOODOOODOPerlOO
000000000000 000b0o0oooeeuoooooooboooopPericboon

Page 2

L1 Perll] O [

ERERERN

O0000000D0O0ORandalL.Scbwartzd O OOOOOOBriandFoyd OO DOOOOOOO Tom
Pboenix(D RandalL.SchwarzO OO0 O 0000000000 DOOOOOODODOOOOOODODOOOO
O0000000PeriOOOOOCDOOPeriDOODOOPerlOODOOOOOPerDOOOOO0OOReilly
0000 briandfoyD D OO0 OPeriD000O0OO0O0O0OODOThePerlReviewO OO OOOO0OOOO
O0PeriDO0O0DOPeriDO0ODODOO OPerl0 DO OODO O PerlD O 0O O EffectivePerl Programming]

[0 Addison—Wesleyl 0 O 0O O O O O O Tom Phoenix[StonehengeConsulting Services([0 [0 0 Perld O
000 0O 0O O Usenetd comp.lang.perl.misc] complang.pefl.moderated 0 O O OO0 00O OO O O Perld O O
O00000oO00PerDOO0O

Page 3

[PerlJ O [

ERERERN

Foreword Preface 1. introduction What Should You Know Already? strict and warnings Perl v5.14 A Note on
Versions What About All Those Footnotes? What's With the Exercises? How to Get Help What If I'm a Perl
Course Instructor? Exercises 2. Using Modules The Standard Distribution Exploring CPAN Using Modules
Functional Interfaces Selecting What to Import Object-Oriented Interfaces A More Typical Object-Oriented
Module: Math::Biglnt Fancier Output with Modules What's in Core? The Comprehensive Perl Archive Network
Installing Modules from CPAN CPANmMinus Installing Modules Manually Setting the Path at the Right Time
Setting the Path Outside the Program Extending @INC with PERLSLIB Extending @INC on the Command Line
local::lib Exercises 3. Intermediate Foundations. List Operators List Filtering with grep Transforming Lists with map
Trapping Errors with eval Dynamic Code with eval The do Block Exercises 4, Introduction toReferences Doing the
Same Task on Many Arrays PEGS: Perl Graphical Structures Taking a Reference to an Array Dereferencing the
Array Reference Getting Our Braces Off Modifying the Array Nested Data Structures Simplifying Nested Element
References with Arrows References to Hashes Checking Reference Types Exercises 5. References and Scoping
More than One Reference to Data What If That Was the Name? Reference Counting and Nested Data Structures
When Reference Counting Goes Bad Creating an Anonymous Array Directly Creating an Anonymous Hash
Autovivification Autovivification and Hashes Exercises Manipulating Complex Data Structures Using the
Debugger to View Complex Data Viewing Complex Data with Data::Dumper Other Dumpers Marshalling Data
Storing Complex Data with Storable YAML JSON Using the map and grep Operators Applying a Bit of Indirection
Selecting and Altering Complex Data Exercises Subroutine References Referencing a Named Subroutine
Anonymous Subroutines Callbacks Closures Returning a Subroutine from a Subroutine Closure Variables as
Inputs Closure Variables as Static Local Variables state Variables Finding Out Who We Are Enchanting
Subroutines Dumping Closures Exercise 8. Filehandle References The Old Way The Improved Way Filehandles to
Strings Processing Strings Line by Line Collections of Filehandles IO::Handle and Friends 1O::File |O::Scalar
10::Tee 10::Pipe 10::Null and 10::Interactive Directory Handles Directory Handle References Exercises Regular
Expression References Before Regular Expression References Precompiled Patterns Regular Expression Options
Applying Regex References Regexes as Scalars Build Up Regular Expressions Regex-Creating Modules Using
Common Patterns Assembling Regular Expressions Exercises 10. Practical Reference Tricks Fancier Sorting Sorting
with Indices Sorting Efficiently The Schwartzian Transform Multilevel Sort with the Schwartzian Transform
Recursively Defined Data Building Recursively Defined Data Displaying Recursively Defined Data Avoiding
Recursion The Breadth-First Solution Exercises 11. Building Larger Programs The Cure for the Common Code
Inserting Code with eval Using do Using require The Problem of Namespace Collisions Packages as Namespace
Separators Scope of a Package Directive Packages and Lexicals Package Blocks Exercises 12. Creating Your Own
Perl Distribution Perl's Two Build Systems Inside Makefile.PL Inside Build.PL Our First Distribution h2xs Module:
:Starter Custom Templates Inside Your Perl Distribution The META File Adding Additional Modules [0 [13.
Introduction to Objects 14. Introduction to Testing 15. Objects with Data 16. Some Advanced Object Topics 17.
Exporter 18. Object Destruction 19. Introduction to Moose 20. AdvancedTesting 21. Contributing to CPAN
Appendix: Answers to Exercises Index of Modules in this Book Index

Page 4

[PerlJ O [

ERERERN

0000 OO0 SortingEfficiently As the Professor tries to maintain the community computing facility (built
entirely outof bamboo, coconuts, and pineapples, and powered by a certified Perl-hacking monkey), he continues
to discover that people are leaving entirely too much data on thesingle monkey-powered filesystem, so he decides
to print a list of offenders. The Professor has written a subroutine called ask_monkey_about, which, given a
cast-away's name, returns the number of pineapples of storage they use. We have to ask the monkey because he's in
charge of the pineapples. An initial naive approach to find the offenders from greatest to least might be something
like:In theory, this would be fine. For the first pair of names (Gilligan and Skipper), we askthe monkey "How many
pineapples does Gilligan have?" and "How many pineapplesdoes Skipper have?" We get back two values from the
monkey and use them to order Gilligan and Skipper in the final list. However, at some point, we have to compare
the number of pineapples that Gilliganhas with another castaway as well. For example, suppose the pair is Ginger
and Gilligan. We ask the monkey about Ginger, get a number back, and then ask the monkey about Gilligan...
again. This will probably annoy the monkey a bit, since we already asked. But we need to ask for each value two,
three, or maybe even four times just to put theseven values into order. This can be a problem because it irritates the
monkey. How do we keep the number of monkey requests to a minimum? Well, we can build atable first. We use a
map with seven inputs and seven outputs, turning each castaway item into a separate array reference, with each
referenced array consisting of the cast-away name and the pineapple count reported by the monkey.

Page 5

L1 Perll] O [

ERERERN
OPerl 0 (@O0) D20)ODOOODODOPeriDOOOOOODOPeriDO0OODODOODOODODOOODO

O0000ooO0OPeriO000O0D00O0OD00O0ODDO0ODODOODDO0ODODOODDOODODOODOO
gudobbbtogoooooobouogd

Page 6

[PerlJ O [

ERERERN

100 If you've mastered The Llama, make haste to read this one. Even if you only want to do scripting with Perl,
you'll eventually find you need data structures slightly more complicated than just flat arrays and hashes, and you
need to know about references for that. While The Camel does contain a fair chunk of material on just this subject,
it was a bit too much for me to digest after The Llama. If Intermediate Perl (aka The Alpaca) had been around for
me to read, | would have had a much easier time.Written in the same style as The Llama, this breeze through most
of the rest of Perl, ...in particular: references, objects, packages and modules. These are the bits that you need to use
Perl as a general purpose programming language, not just for scripting. In a similar pragmatic vein, it also covers
how to use tools to build your own packages in the CPAN style, and there's a good chunk of material on using
Test::More for unit tests. Probably the only thing missing is material on type globs and symbol tables, although
hopefully, brian d foy's forthcoming Mastering Perl will fill in these gaps. The bottom line is this is Llama part 2, and
you need to read it if you want to have any hope of understanding anyone else's Perl. But | can't give it five stars.
The major problem is that the material is not very well organised. At the chapter level, objects are sandwiched
between modules and packages. It would have been far preferable to keep the module and package information
together. As a result, the distinction between modules and packages is rather muddied, and the introduction of
objects in the middle just makes things worse. Overall, | found the explanations to lack the clarity of the Llama.A
more minor complaint is that, while there are mercifully fewer annoying footnotes, the Gilligan's Island theme (if,
like me, you had no exposure to this growing up, you might want to read the Wikipedia article first!) grates far
sooner than the Flintstones flavour of the Llama. O O O [›

0000000000000 00D0DbDO0On

WOOOoO0O0DDOOoO0DOOoOoDbOOoOoooooo
ADOO0O0DO00DO00DO000DO00D000D0DO00000DperiDOOCDOOOOperdd
000000000000 0O00DO000o0ooDDO0o0o0oOoDDOOo0ooOOnDdd learning perl
000000000000 oOO00DOo00DoOOo0oOo0oDobOoooooooOo0ooooooDooon
O00,000000000000peri000000DO0O0OO0OOO0DO0OODDOOODOODOOO0O
000000000000 000D000b000per D0 00D0D0O0OO00O0ODDOODOOODDO
O0o00o0ooooboooooobooog
s000000000000D0O000000DODODODOOandroidd OO 0O O trainingdd VC++samples
ooooo

Page 7

L1 Perll] O [

ERERERN

oot ododoooooooodododoooooooouodooooogn
0000000000000 O0Olearningmoreperl0 0000000 OODOO0OOOOOOOOONO
oot otdododooooooootdouooooooooooanoao
gododotooooooooouodoooo* oo” oodouoooooooooooao
gbododotoooooooootuodoooooooootdodoooooooooonoao
0000000000000 O0O0DODO0O0O 1. reduce repeated codel.1 by using reference we can decouple
the code from data structure on which it operates, then we can reuse the code.2. consider memory usage3. map an
array to a hash so you can check it4. the dereference of a reference to an array EQUALS the name of the array

Page 8

L1 Perll] O [

ERERERN

guoooobboopbrOdooobobbgogoooobnbd

OO00O0O0O0O0O :www.tushulll.com

Page 9

