图书基本信息

书名:《量子夸克》

13位ISBN编号: 9787535752369

10位ISBN编号:7535752365

出版时间:2008

出版社:湖南科学技术出版社

作者:(英)安德鲁·华生

页数:505

译者:刘健,雷奕安

版权说明:本站所提供下载的PDF图书仅提供预览和简介以及在线试读,请支持正版图书。

更多资源请访问:www.tushu111.com

前言

掂一下这本书,你就能感觉到地心引力的作用。看到这一页字,你会意识到光的存在:引力和电磁力 对我们来说,都是再熟悉不过的东西了。但是大自然还操纵着另外两种我们不怎么熟悉的力。要了解 这两种力的机理,就要在进行高倍放大后,在特别精细的尺度上观察世界,这时日常事物都会呈现出 更为基本的组成部分。这两种我们不太熟悉的力,分别叫做强相互作用力(strong force,简称强力)和弱 相互作用力(weak force,简称弱力)。强力使组成物质的最基本成分结合在一起,为我们的太阳提供动 力,而弱力则参与放射性过程。物理学家们已经提出了一套理论,来说明强力怎样在最基本的层次上 产生作用,本书的内容就是关于这套理论的。这套理论就是量子色动力学(quantumchromodynamics), 或简称为QCD。它是人类智慧最伟大的成就之一。研究强相互作用力的物理学分支叫做粒子物理,或 者也可以叫做高能物理。高能物理学家也研究弱相互作用力,但是我们可以耍个小把戏,把有关弱力 的东西,连同包括引力在内的所谓大统一理论都放到一边。就像一本历史书,可能仅涵盖了英国历史 ,而不是整个欧洲的历史一样,本书的主要目的是介绍量子色动力学及其基本规律和发展历程。就像 一本讲述英国历史的书并不能记载所有的英国历史一样,本书也不可能面面俱到。为了方便更广大的 读者,与其他介绍粒子物理的书相比,本书更加详细地探讨了量子色动力学及其相关内容。 克》一书意在使广大读者容易理解书中内容:读者不需要有物理学或数学基础,本书使用的符号也做 了最大程度的简化。如同一本俄国名著中会有许多人物的名字令我们感到陌生那样,本书也会有很多 晦涩的术语,因此书后提供了详尽的术语表供大家查阅。书后还收录了重大事件的历史年表,以帮助 读者勾勒出QCD随时间发展的脉络。量子色动力学是一个庞大的课题,许多人为此投入了大量时间和 精力,如此多的内容无法全部包罗在本书当中。我希望有关专家们能原谅我略去了一些观点、人物、 实验以及参考资料,权且让我们在伟大思想之间信步,做一次轻松的旅行,而不要把本书作为一本教 科书来对待。

内容概要

你能感觉和触摸到的世界是由原子构成的,原子是能够分辨的最小物质块。但是原子中心本身又是一个全新的世界,其中的居民是夸克:夸克看不到,不可思议地小,但却是构成我们这个宇宙的最小砖块。在夸克统治的这个世界中,规则与我们的世界大不相同。这些规则是量子规则。巨大的粒子加速器可以将这个世界展现在物理学家们眼前,使他们能够形成一套关于量子规则的理论,用来解释夸克何感觉彼此的存在。《量子夸克》讲的就是这套理论:量子色动力学。

作者简介

安德鲁·华生是一位自由职业的科学记者和作家。他在曼彻斯特大学拿到理论物理博士学位之后,继续研究和讲授物理。他现在是食物研究所(Instituteof Food Research)的兼职科学家,同时也写作。他经常为《科学》杂志写文章。

书籍目录

前言

致谢

第一章 力及其相关理论简介

第二章 对称性

第三章 量子世界

第四章 向QCD进军

第五章 QCD理论的一个数字

第六章 群居的胶子

第七章 夸克和强子

第八章 显微镜下的夸克

第九章 庸人自扰

第十章 棋盘QCD理论

附录1 QCD年表

附录2 小辞典

章节摘录

第一章 力及其相关理论简介在路易斯安那州(Louisiana)的利文斯通(Livingston),坐落着一幢与 众不同的"L"形建筑物。它由两条相互垂直的4千米长的臂组成,两臂的远端和两臂连接的拐角处都 装有反射镜,激光经镜子反射后在两臂中来回穿梭。在往返多次之后,光线会重新汇合。测量结果令 人吃惊:建筑物的长度发生了微小的改变。建筑物的长度为什么会改变呢?难道路易斯安那州自身发 生了伸缩?科学家们普遍赞同这个想法。也就是说,如果艾尔伯特?爱因斯坦(Albert Einstein)的引力 理论正确,引力波会穿过路易斯安那州,同样也会经过华盛顿州(Washington state)。在华盛顿州的 汉福德,也有与路易斯安那州一模一样的仪器正在观测这种波动。波动会穿过整个地球。实际上,根 据爱因斯坦的广义相对论,波动将穿过时空结构本身。只不过在路易斯安那州和华盛顿州能方便地观 察到这种波动而已。引起波动的振动源非常强,能够使整个宇宙都发生震颤,诸如恒星的坍塌,甚至 是宇宙诞生本身都属于这种振动源。广义相对论预言,这些事件将会发出引力波,这就是科学家们在 路易斯安那州和华盛顿州想要探测的那种时空波动。在意大利、澳大利亚等其他一些地方也有探测器 在探测这种波动。广义相对论还预言了黑洞(black hole,一种坍塌后的恒星)的存在,其强大的引力 连光都无法挣脱。天文学家们无法直接想象黑洞的样子,但他们已经发现了许多有可能是黑洞的天体 像天鹅座X1恒星系统(Cyanus X-1 system)中的伴星就极有可能是黑洞。天文学家认为,我们银河 系的中心也隐藏着一个巨大的黑洞。他们的观测也支持了广义相对论的另一个预言——引力透镜效应 (gravitational lensing)。就是说,如果在地球上观测一个很大的星系,可能会看到星系的多个像,这 些像会按照一定的方式排列,并且看起来可能比实际位置更远。爱因斯坦最初的想法是,太阳会使恒 星发出的光弯曲,引力透镜效应是这种想法的另一个说法,人们第一次观测到引力透镜效应是在1979 年。而太阳会使光线弯曲的预言,早在1919年就已经被证实,正是这一成就使爱因斯坦和广义相对论 登上了历史舞台。

精彩短评

- 1、涉及到的专业方面的只是还是挺多的,跟他他几本第一推动系列的图书相比,这一本啃起来比较费力。不过转定还是比较精美的,图文并茂,有数学我物理基础的人看起来可能会比较方便
- 2、书中文字通俗易懂,能勾起阅读欲望,就是装订的太差,书页参差不齐,估计还没看完就会散架了
- 3、蛮不错的书,内容简单易懂。。。
- 4、看看
- 5、如果有信心读下去,还是能学到很多东西的。
- 6、资料翔实的介绍,妙趣横生的解说
- 7、这是一本关于理解我们这个世界的书,内容很充分,不太难懂,可读性很强,值得看看!花少量的钱来理解我们这个世界的理论是很值得的事情!!!
- 8、书不错,质量很好,下次再来
- 9、量子的世界很神奇
- 10、用到的数学工具有点难理解这个世界不容易...
- 2014/11/29.。。我竟然读过这本书
- 11、量子名著
- 12、好书,一本历史书籍
- 13、作者写的(或者是翻译的)内容有点不系统,不太好懂
- 14、受益匪浅的好书很有幸能第一个评论啊,李先生的书真的很好湖南科技出版社的第一推动系列可以 说是中国科普第一读物有内容,有深度希望能把更多新鲜的知识早日更多地带到中国
- 15、,很喜欢,极力推荐,
- 16、我导师雷奕安翻译的书。。拜读了一下太深奥了。。不能算是一本好的科普书。。。
- 17、量子夸克
- 18、写的还可以,不过有得太深奥了。。。看不懂
- 19、书皮有些磨损,书是正版
- 20、写的不错,但比宇宙的琴弦还差些
- 21、量子色动力学 -----强力
- 22、正在看,第一推动的书都还可以内容比较全面!
- 23、比较通俗的讲述了强作用力
- 24、讲强相互作用的发展历程,没有高深的数学,能够学到很多前沿物理知识
- 25、书很好,和书店买的一样
- 26、面广
- 27、粒子无限可分,夸克是否是最小微粒呢??不管是否,我们还是先了解它吧!
- 28、满深奥的,供专业人士研究
- 29、本书详细讲解了现代成功的强核力理论---量子色动力学,思路详细,绝对值得一读
- 30、讲的深入浅出,很有特色,看了一遍,还要慢慢品味
- 31、第一推动的很多书都是经典科普,写的好,翻译的也不错,多读读还是有好处的
- 32、智慧引领财富继续感受智慧的精神世界。。。。。。 发货速度很快 真的这是一本好书
- 33、對我來說艱深的書必須五星哈哈
- 34、中微子超光速了
- 35、内容很丰富,看后很有收获,建议喜欢物理的人一定要买
- 36、这本又厚又难
- 37、第一推动好多年了,任然保持了温重简洁的风格。文理科的知识人士不读是憾事。如读不进去的话除去数理基础外,可能是人生观过于实惠了,对健康不利。
- 38、偏向于学术化,可能和这个题目本身有关,如果只是想了解的话会比较困难
- 39、其实很棒,不过没有得到什么新知识
- 40、有一定的难度理解,又不是太难懂,适合对物理有兴趣又对量子力学有基础认识的爱好者。
- 主要讲的是强力部分,涉及的是原子核的内部粒子的相互作用。

- 41、缺乏背景知识的人不太好读懂。
- 42、买给初二的学生的,我本不喜欢物理,儿子喜欢,看完了之后还推荐给同学

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:www.tushu111.com