过程设计原理

当前位置:首页 > 工业技术 > 化学工业 > 过程设计原理

出版社:化学工业出版社
出版日期:2002-8
ISBN:9787502532703
作者:塞德
页数:824页

作者简介

在文件精神指导下,全国普通高等学校尤其是重点高校中兴起了使用国外教材开展教学活动的潮流。如生物技术与工程、环境科学与工程、材料科学与工程及作为其学科基础理论重要组成部分的化学技术和化学工程技术又是这股潮流中最为活跃的领域之一。在教育部“化工类专业人才培养方案及教学内容体系改革的研究与实践”项目组及“化工类专业创新人才培养模式、教学内容、教学方法和教学技术改革的研究与实践”项目组和“全国本科化学工程与工艺专业教学指导委员会”的指导和支持下,化学工业出版社及时启动了引进国外名校名著的教材工程。

书籍目录

Part one Process invention-heuristics and analysis1.TheDesignProcess31.0Objectives31.1PrimitiveDesignProblems3TypicalPrimitiveDesignProblem5ProcessDesignTeam5IndustrialConsultants51.2StepsinDesigningandRetrofittingChemicalProcesses6AssessPrimitiveProblem6SurveyLiterature8ProcessCreation10DevelopmentofBaseCase10DetailedProcessSynthesisUsingAlgorithmicMethods11PlantwideControllabilityAssessment11DetailedDesign,EquipmentSizingandCostEstimation,ProfitabilityAnalysis,andOptimization12WrittenProcessDesignReportandOralPresentation12FinalDesign,Construction,Start-up,andOperation12Summary131.3EnvironmentalProtection13EnvironmentalIssues13EnvironmentalFactorsinProcessDesign15EnvironmentalDesignProblems181.4SafetyConsiderations19SafetyIssues19DesignApproachesTowardSafeChemicalPlants221.5EngineeringEthics231.6RoleofComputers27Spreadsheets28MathematicalPackages28ProcessSimulators28ComputationalGuidelines301.7Summary30References312.ProcessCreation322.0Objectives322.1Introduction322.2PreliminaryDatabaseCreation32ThermophysicalPropertyData33EnvironmentalandSafetyData37ChemicalPrices37Summary382.3Experiments382.4PreliminaryProcessSynthesis38ContinuousorBatchProcessing39ChemicalState41ProcessOperations42SynthesisSteps44ExampleofProcessSynthesis:ManufactureofVinylChloride45SynthesisTree56Heuristics56AlgorithmicMethods572.5DevelopmentoftheBase-CaseDesign57DetailedProcessFlowsheet57ProcessIntegration60DetailedDatabase60Pilot-PlantTesting61ProcessSimulation622.6Summary62References62Exercises633.SimulationtoAssistinProcessCreation643.0Objectives643.1Introduction653.2PrinciplesofFlowsheetSimulation66ProcessandSimulationFlowsheets66UnitSubroutines77CalculationOrder79Recycle79RecycleConvergenceMethods87FlashwithRecycleProblem89DegreesofFreedom90ControlBlocksTDesignSpecifications91FlashVesselControl94BidirectionalInformationFlow(HYSYS)943.3SynthesisoftheTolueneHydrodealkylationProcess98ProcessSimulation1013.4SimulationoftheMonochlorobenzeneSeparationProcess104UseofProcessSimulators1053.5Summary106References107Exercises1074.HeuristicsforProcessSynthesis1124.0Objectives1124.1Introduction1134.2RawMaterialsandChemicalReactions1144.3DistributionofChemicals116InertSpecies117PurgeStreams119RecycletoExtinction122Selectivity123ReactiveSeparations1254.4Separations1264.5HeatRemovalfromandAdditiontoReactors128HeatRemovalfromExothermicReactors128HeatAdditiontoEndothermicReactors1314.6PumpingandCompression1324.7Summary134References134Exercises135PartTwoDETAILEDPROCESSSYNTHESIS-ALGORITHMICMETHODS5.SynthesisofSeparationTrains1415.0Objectives1415.1Introduction1415.2CriteriaforSelectionofSeparationMethods1455.3SelectionofEquipment1485.4SequencingofOrdinaryDistillationColumns1505.5SequencingofGeneralVapor-LiquidSeparationProcesses1565.6SequencingofAzeotropicDistillationColumns170AzeotropyandPolyazeotropy170ResidueCurves175DistillationTowers178SeparationTrainSynthesis1885.7SeparationSystemsforGasMixtures194MembraneSeparationbyGasPermeation197Adsorption197Absorption198PartialCondensationandCryogenicDistillation1995.8SeparationSequencingforSolid-FluidSystems1995.9Summary201References201Exercises2026.SecondLawAnalysis2076.0Objectives2076.1Introduction2076.2TheSystemandtheSurroundings2106.3EnergyTransfer2126.4ThermodynamicProperties2136.5EquationsforSecondLawAnalysis2156.6ExamplesofLost-WorkCalculations2196.7ThermodynamicEfficiency2226.8CausesofLostWork2236.9ThreeExamplesofSecondLawAnalysis2246.10Summary237References237Exercises2387.HeatandPowerIntegration2437.0Objectives2437.1Introduction244HeatIntegrationSoftware2477.2MinimizingUtilitiesinHeatIntegration247Temperature-IntervalMethod248UsingGraphicalDisplays251LinearProgrammingMethod2547.3StreamMatchingatMinimumUtilities256StreamMatchingatthePinch256StreamMatchingUsingaMixed-IntegerLinearProgram2637.4MinimumNumberofHeatExchangers--BreakingHeatLoops2677.5OptimumApproachTemperature2717.6SuperstructuresforMinimizationofAnnualizedCost2747.7Heat-IntegratedDistillationTrains279EffectofPressureonHeatIntegration279Multiple-EffectDistillation281HeatPumping,VaporReeompression,andReboilerFlashing284SuperstructuresforMinimizationofAnnualizedCost2847.8HeatEnginesandHeatPumps286PositioningHeatEnginesandHeatPumps289OptimalDesign2927.9Summary295References295Exercises296Partthree detailed design,equipment sizing,economics ,and optimization8.HeatExchangerDesign3038.0Objectives3038.1Introduction303HeatDuty303HeatTransferMedia305Temperature-DrivingForceforHeatTransfer308PressureDrop3128.2EquipmentforHeatExchange312Double-PipeHeatExchangers312Shell-and-TubeHeatExchangers314Air-CooledHeatExchangers319CompactHeatExchangers320Temperature-DrivingForcesinShell-and-TubeHeatExchangers3218.3HeatTransferCoefficientsandPressureDrop326EstimationofOverallHeatTransferCoefficients327EstimationofIndividualHeatTransferCoefficientsandFrictionalPressureDrop327TurbulentFlowinStraight,SmoothDucts,Pipes,andTubesofCircularCrossSection329TurbulentFlowintheAnnularRegionBetweenStraight,Smooth,ConcentricPipesofCircularCrossSection331TurbulentFlowontheShellSideofShell-and-TubeHeatExchangers331HeatTransferCoefficientsforLaminar-Flow,Condensation,Boiling,andCompactHeatExchangers3328.4DesignofShell-and-TubeHeatExchangers3338.5Summary335References335Exercises3369.CapitalCostEstimation3389.0Objectives3389.1Introduction3389.2CostCharts339CostIndices342InstallationCosts342MaterialsandPressureConsiderations344EquipmentSizes344OtherInvestmentCosts345LangFactorMethod3489.3Equations348HeatExchangers348CylindricalProcessVessels349Trays349BlowersandCompressors3499.4ASPENPLUS351ProjectDates353EquipmentLists353EquipmentSizeandCostSpecifications356RemainingInvestmentCosts361CostIndices363Results3649.5DetailedCostEstimation3689.6Summary369References369Exercises37010.ProfitabilityAnalysis37410.0Objectives37410.1Introduction37410.2CostSheet37510.3TotalCapitalInvestmentandApproximateProfitabilityMeasures378WorkingCapital378ApproximateProfitabilityMeasures37810.4TimeValueofMoney384CompoundInterest384Annuities386ComparisonofEquipmentPurchases38810.5CashFlow391Depreciation392ProfitabilityMeasures393NetPresentValue393InvestorsRateofReturn39410.6ASPENPLUS396CostSheet396WorkingCapital401ProfitabilityMeasures401Results40410.7DetailedCostEstimation40810.8Summary408References409Exercises40911.OptimizationofProcessFlowsheets41611.0Objectives41611.1Introduction41611.2NonlinearProgram417ObjectiveFunction417EqualityConstraints418InequalityConstraints418GeneralFormulation41911.3OptimizationAlgorithm419RepeatedSimulation421InfeasiblePathApproach421CompromiseApproach422PracticalAspectsofFlowsheetOptimization42211.4FlowsheetOptimizations--CaseStudies42311.5ASPENPLUS425EnteringtheNLP425AdjustingtheSimulationFlowsheet42611.6Summary433References433Exercises433PartFourPLANTWIDECONTROLLABILITYASSESSMENT12.InteractionofProcessDesignandProcessControl43912.0Objectives43912.1Introduction43912.2ControlSystemConfiguration444ClassificationofProcessVariables444Degrees-of-FreedomAnalysis44612.3QualitativePlantwideControlSystemSynthesis44912.4Summary454References456Exercises45613.FlowsheetControllabilityAnalysis45713.0Objectives45713.1QuantitativeMeasuresforControllabilityandResiliency458Relative-GainArray(RGA)459DisturbanceCostandDisturbanceConditionNumber46713.2TowardAutomatedFlowsheetC&RDiagnosis471Short-CutC&RDiagnosis471GeneratingLow-OrderDynamicModels472Tutorial:C&RAnalysisforHeat-IntegratedDistillationColumns47413.3CaseStudies48013.4MATLABforC&RAnalysis49313.5Summary496References496Exercises49714.DynamicSimulationofProcessFlowsheets50014.0Objectives50014.1FundamentalConceptsinDynamicSimulation50014.2DynamicSimulationUsingHYSYS50114.3Control-LoopDefinition50214.4ControllerTuningMethods504On-LinePIControllerTuning504Model-BasedPIControllerTuning50514.5TutorialExercise:ControlofaBinaryDistillationColumn50914.6CaseStudies52214.7Summary532References532Exercises532PartFiveDESIGNREPORT15.WrittenProcessDesignReportandOralPresentation-53715.0Objectives53715.1WrittenReport538SectionsoftheReport538PreparationoftheWrittenReport543PageFormat544SampleDesignReports54515.2OralDesignPresentation546TypicalPresentation546MediaforthePresentation546RehearsingthePresentation547WrittenHandout547EvaluationoftheOralPresentation547Videotapes54915.3AwardCompetition54915.4Summary549References549APPENDIXESI.ASPENPLUSinProcessDesign551A-I.1ASPENPLUSInputForms551A-I.2DrawinganASPENPLUSFlowsheet553A-I.3ASPENPLUSParagraphs553A-I.4NestedRecycleLoops554A-I.5DesignSpecifications557A-I.6InlineFORTRAN559A-I.7CaseStudy:MonochlorobenzeneSeparationProcess565ASPENPLUSSimulationFlowsheetandInput565InterpretationofProgramOutput565II.HYSYSinProcessDesign581A-II.1TheHYSYSModelingEnvironment581A-II.2Steady-StateSimulation584AcyclicProcesses584ProcessesInvolvingRecycle605Subflowsheets609MultistageSeparationUsingtheColumnSubflowsheet609Optimization618A-II.3CaseStudy627References629I.PhaseEquilibriaandProcessUnitModels630A-III.1PhaseEquilibria630A-III.2FlashVessels630A-III.3Pumps642A-III.4CompressorsandExpanders644A-III.5HeatExchangers646HeatRequirementModels647Shell-and-TubeHeatExchangers647A-III.6ChemicalReactors651StoichiometricReactorModels652EquilibriumReactorModels654KineticReactorModels655A-III.7Separators666Split-Fraction(BlackBox)Models667Distillation:Fenske(Winn)-Underwood-GillilandShortcutDesign667Distillation:EdmisterApproximateGroupMethod672Distillation:RigorousSimulationUsingtheUnabridgedMESHEquations673References679IV.PhysicalPropertyEstimation,SolidsHandling,andElectrolytes680A-IV.1PhysicalPropertyEstimation680DataBanks680PropertyEstimation681ASPENPLUS686EstimatingParametersforPureSpecies690SelectionofPropertyEstimationMethodsandPropertyDataRegression692A-IV.2NonconventionalComponentsandSubstreams698Substreams700StreamClasses702A-IV.3SolidsHandling703A-IV.4Electrolytes709ChemicalandPhaseEquilibrium709ElectrolytesinProcessSimulators716References720V.ResidueCurvesforHeterogeneousSystems722VI.SuccessiveQuadraticProgramming723A-VI.1NLPandStationarityConditions723A-VI.2SolutionoftheStationarityEquations724References725VII.GeneralAlgebraicModelingSystems(GAMS)726A-VII.1InputFile727Statements728A-VII.2ExpandedFeatures:Documentation,VariableRedeclaration,andDisplay730A-VII.3ExpandedFeatures:Sets,Tables,ParametersandScalars,andEquationGrouping734A-VII.4Debugging737References739VIII.DesignProblemStatements740A-VIII.0ContentsandIntroduction740A-VIII.1Petrochemicals742A-VIII.2PetroleumProducts748A-VIII.3GasManufacture749A-VIII.4Foods752A-VIII.5Pharmaceuticals754A-VIII.6Polymers755A-VIII.7Environmental--AirQuality758A-VIII.8Environmental--WaterTreatment767A-VIII.9Environmental--SoilTreatment771A-VIII.10Environmental--Miscellaneous774IX.DynamicSimulationUsingDYNAPLUS778A-IX.1Introduction778A-IX.2ProcedureforDynamicSimulation779A-IX.3Control-LoopDefinitioninDYNAPLUS779A-IX.4TutorialExercise:ControlofaBinaryDistillationColumn780A-IX.5DynamicSimulationoftheMCBSeparationProcess791X.HeuristicsforProcess,EquipmentDesign795CompressorsandVacuumPumps795ConveyorsforParticulateSolids796CoolingTowers796CrystallizationfromSolution797Disintegration797DistillationandGasAbsorption798DriversandPowerRecoveryEquipment799DryingofSolids799Evaporators800Extraction,Liquid-Liquid800Filtration801FluidizationofParticleswithGases801HeatExchangers802Insulation802MixingandAgitation803ParticleSizeEnlargement803Piping804Pumps804Reactors804Refrigeration805SizeSeparationofParticles805Utilities:CommonSpecifications806Vessels(Drums)806Vessels(Pressure)806Vessels(StorageTanks)807Xl.MaterialsofConstruction808XILGenerationofLinearModelsinStandardForms810AuthorIndex815SubjectIndex817

前言

  随着中国社会主义现代化建设进入新的阶段,以高质量的高等教育培养千百万专门人才,迎接新世纪的挑战,是实现“科教兴国”战略的基础工程,也是完成“十五”计划各项奋斗目标的重要保证。为切实加强高等学校本科教学并提高教学质量,教育部于2001年专门下发文件提出12条意见,对高等学校教学工作从认识、管理、教师队伍到教学方法和教学手段等给予指导。文件强调,按照“教育要面向现代化、面向世界、面向未来”的要求,为适应经济全球化和科技国际化的挑战,本科教育要创造条件使用英语等外语进行公共课和专业课教学。  在文件精神指导下,全国普通高等学校尤其是重点高校中兴起了使用国外教材开展教学活动的潮流。如生物技术与工程、环境科学与工程、材料科学与工程及作为其学科基础理论重要组成部分的化学技术和化学工程技术又是这股潮流中最为活跃的领域之一。在教育部“化工类专业人才培养方案及教学内容体系改革的研究与实践”项目组及“化工类专业创新人才培养模式、教学内容、教学方法和教学技术改革的研究与实践”项目组和“全国本科化学工程与工艺专业教学指导委员会”的指导和支持下,化学工业出版社及时启动了引进国外名校名著的教材工程。  出版社组织编辑人员多次赴国外学习考察,通过国外出版研究机构对国外著名的高等学校进行调查研究,搜集了一大批国际知名院校的现用教材选题。他们还联络国内重点高校的专家学者组建了“国外名校名著评价委员会”,对国外和国内高等本科教学进行比较研究,对教材内容质量进行审查评议,然后决定是否引进。他们与国外许多著名的出版机构建立了联系,有的还建立了长期合作关系,以掌握世界范围内优秀教材的出版动态。  以其化学化工专业领域的优势资源为基础,化学工业出版社的教材引进主要涉及化学、化学工程与工艺、环境科学与工程、生物技术与工程、材料科学与工程、制药工程等专业,对过程装备与控制工程、自动化等传统专业教材的引进也在规划之中。  他们在影印、翻译出版国外教材的过程中,注意学习国外教材出版的经验,提高编辑素质,密切编读联系,整合课程体系,更新教材内容,科学设计版面,提高印装质量,更好地为教育服务。  在化工版“国外名校名著”系列教材即将问世之际,我们不仅感谢化学工业出版社为高等教育所做的努力,更应赞赏他们严谨认真的工作作风。

章节摘录

  With the detailed process flow sheet completed, the task integration step, which was initiated in the preliminary process synthesis, is revisited by the design team. The assumptions are checked and opportunities are sought to improve the designs of the processing units, and to achieve a more efficient process integration. In the latter, attempts are made to match cold streams that need to be heated with hot streams that have cooling requirements, so as to reduce the need for external utilities such as steam and cooling water. In addition, where possible, power is extracted from hot streams at elevated pressures, so as to drivecompressors and pumps. Often, significant improvements can be made in the process design beyond those achievable in the preliminary process synthesis. The algorithmic methods in Chapter 7 for heat and power integration are commonly applied by the design team; the yprovide a systematic approach to minimizing the utilities, matching the hot and cold streams, inserting turbines (as a part of heat engines), and so on.  Having completed the detailed process flow sheet, the design team seeks to check its key assumptions further and to obtain the additional information needed to begin work on the detailed design. As discussed earlier, this usually involves three activities in parallel, the first of which is to create a detailed database by refining and adding to the preliminary database. In the other two activities, a pilot plant is constructed to confirm that the equipment items operate properly and to provide data for the detailed databank, and a simulation model is prepared to enable the team to project the impact of changes in the design and operation parameters, such as temperatures, pressures, reflux ratios, and the number of stages.  In creation of the detailed database, it is common to add transport and kinetics data, as well as data concerning the feasibility of the separations, the identity of any forbidden matches in heat exchange, heuristic parameters, and data for sizing the equipment. Each process requires somewhat different data, and hence it is inappropriate to generalize. However, it is instructive to examine the mix of data needed by a design team in connection with the vinyl chloride process in Figure 2.11.  Beginning with the chlorination reactor, data are needed to determine the impact of the concentrations of C2H4, Cl2, and FeCl3 catalyst in the C2H4Cl2 pool on the intrinsic rate of the chlorination reaction (in kmol/m3hr). With these data, the team can deternune the order of the reaction and its rate constant as a function of temperature, and eventually compute the residence time to achieve nearly complete conversion.  Sirrular data are required for the pyrolysis reactor. In tlus case, the intrinsic rate of reaction is needed as a function of concentration, temperature, and pressure. Furthermore, since the rate of reaction may be limited by the rate at which heat is transferred to the reacting gases, it is probably desirable to estimate the tube-side heat transfer coefficient, hi, as a function of the Reynolds and Prandtl numbers in the tubes. The appropriate equations and coefficients, which are described in Chapter 8, would be added to the database. In the vinyl chloride process, because of the significant differences in the volatilities of the three principal chemical species, distillation, absorption, and stripping are prime candidates for the separators, especially at the lugh production rates specified. For other processes, liquid-liquid extraction, enhanced distillation, adsorption and membrane separators might become more attractive, in which case the design team would need to assemble data that describe the effect of solvents on species phase equilibrium, species adsorption isotherms, and the perme abilities of the species through various membranes.  A key linutation in the flow sheets in Figures 2.9 and 2.11 is that the cold C2H4CI2 streamis not heated by the pyrolysis products because the rate of carbon deposition in such a feed/product heat exchanger is anticipated to be high, and would cause the heat exchanger to foul with carbon. As discussed above, the design team would normally apply the methods of heat and power integration to design a network of heat exchangers that would effectsignificant economies. Hence, it is important to learn more about the rate of carbon deposition. Before the team proceeds to the detailed design stage, it needs data to confirm the validity of this perception above-that is, to enable it to characterize the intrinsic rate of carbon depositon. If the rate is found to be sufficiently low, the team may decide to cool the hot pyrolysis products through heat exchange with the cold streams. For maintenance, to remove carbon deposits periodically, two heat exchangers could be installed in parallel, one of which would be operated while the other is being cleaned. This would provide substantial savings in fuel and cooling water utilities. On the other hand, if the rate of carbon deposition is high, the design team would avoid the exchange of heat between these two streams; that is, it would continue to consider the exchange of that heat to bea so-called forbidden match.  ……

图书封面


 过程设计原理下载



发布书评

 
 


 

农业基础科学,时尚,美术/书法,绘画,软件工程/开发项目管理,研究生/本专科,爱情/情感,动漫学堂PDF下载,。 PDF下载网 

PDF下载网 @ 2024